the concept of (i; j)-cohen macaulay modules
Authors
abstract
we introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. we also introduce the concept of $(i,j)$-cohen--macaulay modules as a generalization of concept of cohen--macaulay modules. these kind of modules are different from cohen--macaulay modules, as an example shows. also an artinian result for such modules is given.
similar resources
THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES
We introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules. These kind of modules are different from Cohen--Macaulay modules, as an example shows. Also an art...
full textLiaison with Cohen–Macaulay modules
We describe some recent work concerning Gorenstein liaison of codimension two subschemes of a projective variety. Applications make use of the algebraic theory of maximal Cohen–Macaulay modules, which we review in an Appendix.
full textRESULTS ON ALMOST COHEN-MACAULAY MODULES
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
full textIndecomposable Cohen-macaulay Modules and Their Multiplicities
The main aim of this paper is to find a large class of rings for which there are indecomposable maximal Cohen-Macaulay modules of arbitrary high multiplicity (or rank in the case of domains).
full textSequentially Cohen-macaulay Modules and Local Cohomology
Let I ⊂ R be a graded ideal in the polynomial ring R = K[x1, . . . , xn] where K is a field, and fix a term order <. It has been shown in [17] that the Hilbert functions of the local cohomology modules of R/I are bounded by those of R/ in(I), where in(I) denotes the initial ideal of I with respect to <. In this note we study the question when the local cohomology modules of R/I and R/ in(I) hav...
full textMy Resources
Save resource for easier access later
Journal title:
journal of algebraic systemsPublisher: shahrood university of technology
ISSN 2345-5128
volume 3
issue 1 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023